skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McBride, James R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ziemelis, Karl (Ed.)
    Surface waves can lead to intriguing transport phenomena. In particular, surface phonon polaritons (SPhPs), which result from coupling between infrared light and optical phonons, have been predicted to contribute to heat conduction along polar thin films and nanowires [1]. However, experimental efforts thus far suggest only very limited SPhP contributions [2-5]. Through systematic measurements of thermal transport along the same 3C-SiC nanowires with and without a gold coating on the end(s) that serves to launch SPhPs, here we show that thermally excited SPhPs can significantly enhance the thermal conductivity of the uncoated portion of these wires. The extracted pre-decay SPhP thermal conductance is over two orders of magnitude higher than the Landauer limit predicted based on equilibrium Bose-Einstein distributions. We attribute the remarkable SPhP conductance to the efficient launching of non-equilibrium SPhPs from the gold-coated portion into the uncoated SiC nanowires, which is strongly supported by the observation that the SPhP-mediated thermal conductivity is proportional to the length of the gold coating(s). The reported discoveries open the door for modulating energy transport in solids via introducing SPhPs, which can effectively counteract the classical size effect in many technologically important films and improve the design of solid-state devices. 
    more » « less
  2. The incorporation of quantum dots in display technology has fueled a renewed interest in InP-based quantum dots, but difficulty controlling the Zn chemistry during shelling has stymied thick, even ZnSe shell growth. The characteristic uneven, lobed morphology of Zn-based shells is difficult to assess qualitatively and measure through traditional methods. Here, we present a methodological study utilizing quantitative morphological analysis of InP/ZnSe quantum dots to analyze the impact of key shelling parameters on InP core passivation and shell epitaxy. We compare conventional hand-drawn measurements with an open-source semi-automated protocol to showcase the improved precision and speed of this method. Additionally, we find that quantitative morphological assessment can discern morphological trends in morphologies that qualitative methods cannot. In conjunction with ensemble fluorescence measurements, we find that changes to shelling parameters that promote even shell growth often do so at the cost of core homogeneity. These results indicate that the chemistry of passivating the core and promoting shell growth must be balanced carefully to maximize brightness while maintaining emission color-purity. 
    more » « less
  3. null (Ed.)
  4. Indium phosphide quantum dots (InP QDs) are nontoxic nanomaterials with potential applications in photocatalytic and optoelectronic fields. Post-synthetic treatments of InP QDs are known to be essential for improving their photoluminescence quantum efficiencies (PLQEs) and device performances, but the mechanisms remain poorly understood. Herein, by applying ultrafast transient absorption and photoluminescence spectroscopies, we systematically investigate the dynamics of photogenerated carriers in InP QDs and how they are affected by two common passivation methods: HF treatment and the growth of a heterostructure shell (ZnS in this study). The HF treatment is found to improve the PLQE up to 16–20% by removing an intrinsic fast hole trapping channel ( τ h,non = 3.4 ± 1 ns) in the untreated InP QDs while having little effect on the band-edge electron decay dynamics ( τ e = 26–32 ns). The growth of the ZnS shell, on the other hand, is shown to improve the PLQE up to 35–40% by passivating both electron and hole traps in InP QDs, resulting in both a long-lived band-edge electron ( τ e > 120 ns) and slower hole trapping lifetime ( τ h,non > 45 ns). Furthermore, both the untreated and the HF-treated InP QDs have short biexciton lifetimes ( τ xx ∼ 1.2 ± 0.2 ps). The growth of an ultra-thin ZnS shell (∼0.2 nm), on the other hand, can significantly extend the biexciton lifetime of InP QDs to 20 ± 2 ps, making it a passivation scheme that can improve both the single and multiple exciton lifetimes. Based on these results, we discuss the possible trap-assisted Auger processes in InP QDs, highlighting the particular importance of trap passivation for reducing the Auger recombination loss in InP QDs. 
    more » « less